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The 4th Iranian Combinatorics Olympiad was held on October 31 and Novem-
ber 1, 2024, bringing together over 2,900 participants in nearly 1,200 teams
from 64 countries. The Problem Selection Committee for this contest con-
sisted of

Alireza Abolfazl Mehdi Seyed Reza
Alipour Asadi Haji Beigi Hosseini

Afrouz Faezeh Morteza
Jabal Ameli Motiei Saghafian
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Problems

Problem 1.

Morteza and Joseph have 100 boxes such that for each 1 < ¢ < 100 one of these
boxes has exactly ¢ coins. Joseph puts the boxes on top of each other in an order
that he prefers. Now in 10 steps, Morteza collects coins in the following way:

at each step, Morteza picks up the top 10 boxes, opens them, and then
selects one of the boxes that he has already opened (this also includes
all the boxes that he has opened in the previous steps) and collects all
the coins of that box.

What is the maximum number of coins that Morteza can always collect regardless
of the way Joseph orders the boxes?

(= p.9)
Problem 2.

Let S be a set of six points in the plane such that no three points of S are collinear.
What is the maximum number of ways that we can partition these 6 points into
two subsets of size three such that the sides of the triangle formed by the points in
each group do not intersect the sides of the triangle formed by the other group?

(= p.9)
Problem 3.
We say that a sequence x1,x2,...,T, is increasing if x; < ;41 for all 1 < i < n.
How many ways are there to fill an 8 x 8 table by numbers 1, 2, 3, and 4 such that:
e The numbers in each row are increasing from left to right,

e The numbers in each column are increasing from top to bottom,

e and there is no pair of adjacent cells such that one is filled with 2 and the
other one is filled with 3. (We say two distinct cells are adjacent if they share
a side)

(= p9)
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Problem 4.

Matin and Morteza are playing a game together on a graph with 100 vertices. At
the beginning of the game, the graph has no edges. In each turn, Matin picks a
vertex that is not full, say v and Morteza must add a new edge that has u as one
of its endpoints while keeping the graph simple (A vertex is full if it is adjacent to
all other vertices of the graph). The game ends as soon as the graph has a cycle
of even length. Matin wishes to maximize the number of edges, whereas Morteza
wants to minimize this. Assuming both players play optimally, what is the number
of edges of the final graph?

(= p.9)
Problem 5.

We say that a coloring of the 7 x 7 table is nice if,
e Every cell is colored by blue or red,
o Every cell has precisely one diagonal neighbor that is red.

Determine the number of nice colorings.

(A cell A is a diagonal neighbor of cell B if A and B share exactly one point.
For instance, each of the four cells on the corners of the table has one diagonal
neighbor.)

(= p.9)
Problem 6.

Below we have a figure of a spider named Johny who has 12 feet. The numbers
in the figure correspond to the distance of Johny’s feet from his head. For taking
a nap on his web, Johny doesn’t need to hold all his feet down but he must keep
his balance and that means, (1) he should hold at least one foot down on the web,
and (2) the total distances of his left feet that are on the web from his head should
be equal to the total distances of his right feet that are on the web from his head.
Determine the number of ways that Johny can take a nap.

N N I
1

101 100 11 10 2 1 2 10 11 100 101

(= p-9)
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Problem 7.

In a 7 x 7 table initially, all the cells are white. At each step, we can identify a tile
as depicted in the figure below (with rotations allowed) on the table and flip the
colors (from white to black and black to white) of all those five cells in the table
simultaneously. After finitely many steps, what is the maximum possible number
of black cells in the table?

(= p.9)
Problem 8.

Given a sequence S =< ai,...,a, > of integers, the number of inversions of S
is equal to the number of pairs 1 < i < j < n such that a; > a;. Let Z =<
ai,...,az > be a sequence of 20 elements from {1,...,10}, where a1,...,a10 is a
permutation of {1,...,10} and for every 1 < i < 10, a10+; = 11 — a;. Let A and
B be the minimum and maximum possible values for the inversion number of Z,
respectively. What is A+B?

(= p.9)
Problem 9.

Rostam wants to find a sequence of numbers < a1, ..., a2025 > such that 0 < a; <
1023 and if you place them around a circle in the same order (as they appear in the
sequence), then each number is XOR of its two neighbors on the circle. How many
ways are there to do this?

The XOR of two non-negative integers x and y is defined in the following way:
Assume (Tg..-%1)2 and (Yz-..y1)2 are their corresponding binary representations and
without loss of generality, assume k > t. Now, let yi41 =--- =y =0.

Then, the binary representation of their XOR is (z1...2x)2 where z; = 0 if z; = y;
and Zi = 1if xX; ;é Yi-

For instance, let z = 49 and y = 101, then x = (110001)2 and y = (1100101). Now,
the binary representation of their XOR is (1010100)2 which means their XOR is 84.

(= p.9)
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Problem 10.

Bahman has an 8 x 8 table. Originally, all the cells are empty and white. He fills
each of the cells with a number from 1 to 4. Then, he chooses two numbers a and
b such that 1 < a < b <4 and colors all the cells that are filled with a or b in gray.
The value of the table is 64 x t, where ¢ is the number of rows that are completely
gray after this process. For instance, in the table below, if we choose ¢ = 2 and
j = 3, we would have t = 3 rows that are completely gray, and hence the value of
the table is 192. What is the average value of the table over all the possible ways
that Bahman can fill the table and choose a and b7
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Problem 11.

There are 10 cells around a circle and in each cell, there is a digit which is either
one or zero. The process of creating a string from a given cell C' is to start from C
and an empty string S and then in 10 steps, we repeat the following: Move to one
of the two neighboring cells and append the digit inside that cell to the end (right)
of S.

Assume from all the cells we are able to create S = 0101010101. How many different
ways are there to initialize the values of all the cells with zero or one such that this
is possible?

For instance, in the circle below, if we start from the colored cell, we cannot create
S = 0101010101 but we can create S = 1010101010. Two ways of initializing the
values of the cells such as A and B are the same if you can reach A by shifting B
around the circle.

(= p.9)
Problem 12.

Assume S, is the set of all ordered n-tuples of 0 and 1 and let A1, Az, ..., A3
be a permutation of the elements of Ss. Also assume that f(A;) =1 and for every
1 <4 < 32 the value of f(A;) is equal to the smallest positive integer such that for
every j (1 < j < 1), where A; and A; differ in exactly one coordinate, it holds that
f(Ai) # f(A;) (For instance, if A; = (0,1,1,0,1) and A; = (0,1,0,0,1) then A;
and A; differ only in the third coordinate). What is the maximum possible value

of max{f(A1), f(A2),..., f(A32)}.
(= p.9)
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Switching

A graph is a tree if it is connected and does not contain any cycles. Let T be a tree.
The diameter of T is defined as the length (the number of edges) of the longest
path of T'. At each step, we are allowed to update T' by removing an edge and then
drawing a new edge such that 7" remains a tree.

Problem 13.

If T has 2024 vertices and is of diameter 100, after one step what is the minimum
possible diameter of T'?

(= p.9)
Problem 14.

If T has 2024 vertices and is of diameter 100, after one step what is the maximum
possible diameter of T'7

(= p.9)
Problem 15.

What is the minimum possible number k, such that for every tree T' with 2024
vertices and diameter 100, one can reach a tree of a diameter smaller than 100 in
at most k steps?

(= p-9)



Answers

Problem | Answer
1 550
2 7
3 165636900
4 101
5 192
6 123
7 48
8 180
9 1048576
10 2
11 1
12 6
13 51
14 199
15 39
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Problems

Problem 1.

Consider a 13 x 13 table in which the rows are numbered from top to bottom and
the columns are numbered from left to right by numbers 1 to 13. Assume that the
cells that are intersections of an even row with an even column are blue and the
other cells are red (There are 36 blue cells in the table). What is the maximum
number of 1 x 3 and 3 x 1 tiles that we can place inside this table such that (1)
each rectangle only contains red cells and (2) no cell belongs to more than one of
these rectangles?

(— p.17)
Problem 2.
We are given a permutation of {1,2,...,n}, say Il =< m1,..., 7, >. The swapping
step is defined as follows:
¢ Choose two number s and ¢, such that 1 < s <t <mn and t — s is odd.
e Foreach 0 <1< %, update II by swapping msy2; and ms42i41-

For instance, applying a swapping step with s = 3 and ¢ = 8 on the permutation
< 10,9,8,7,6,5,4,3,2,1 > results in the permutation < 10,9,7,8,5,6,3,4,2,1 >.
Assume that n > 3 and we start with Il =<n,n—1,...,1 >.

a) Prove that at least n steps is required to modify IT to < 1,2, ...,n >.
b) Prove that it is possible to modify II to < 1,2,...,n > in exactly n steps.

(— p-19)

13
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Problem 3.

Let A1,..., Asg be subsets of size three of the set X = {1,2,...,10}. We say that a
subset S of X is a covering subset if for every 1 <4 < 20, it holds that SN A; # 0.
What is the minimum possible value of k, such that a covering subset of size k
always exists?

(— p-20)
Problem 4.

We call a graph planar if it can be drawn on the plane so that its edges intersect
only at their endpoints. Let n > 3 be an integer and G be a planar graph on n
vertices. Determine the maximum possible number of cycles of length 3 of G in
terms of n.

(— p-21)
Problem 5.

Let G be a simple graph and let V' be the set of vertices of G. We denote by f(G)
the maximum number k such that there exists a subset S C V with |S| = k, in
which every vertex in S has at most one neighbor in S.

a) Compute f(G)ifV ={0,1,...,n—1} and E = {uv|u—v = r (mod n) where r €
{-2,-1,1,2}}.

b) Assume each vertex v € V' corresponds to a unique sequence of length n con-
sisting of elements in {0, 1,2} (|[V(G)| = 3"™). A pair of vertices are adjacent
in G if their corresponding sequences differ in exactly one element (one bit).
Prove that f(G) > 3™"~'. For example, if n = 4 the vertices corresponding to
sequence < 0,1,2,0 > and < 0,1,1,0 > only differ in the third position and
hence they are adjacent. Prove that f(G) > 3" 1.

(— p.23)
Problem 6.

Consider the increasing sequence 1, 2, ..., n. In each move, we first take two adjacent
elements x and y that are still positive, and then by spending min{z, y} many gold
coins we decrease both elements by min{z,y}. What is the minimum number of
gold coins that we have to spend in order to reach a sequence in which no more
moves are possible?

(— p.25)
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Problem 7.

There are 100 points on the plane, namely Py, ..., Pigo such that no three points
are collinear. Assume for every ¢ and j such that 1 <14 < j — 1 < 98, the segments
P;P;11, PjPj11 do not intersect (i.e., do not share a common point). We say that
{Pi, Pi+1, Pi12} is an empty consecutive triple if the triangle AP; Piy1 P; 12 does not
contain any of the other points. Find the largest number k such that one can always
find at least £ empty consecutive triples.

(— p.26)
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Solutions

Problem 1.

Consider a 13 x 13 table in which the rows are numbered from top to bottom and
the columns are numbered from left to right by numbers 1 to 13. Assume that the
cells that are intersections of an even row with an even column are blue and the
other cells are red (There are 36 blue cells in the table). What is the maximum
number of 1 x 3 and 3 x 1 tiles that we can place inside this table such that (1)
each rectangle only contains red cells and (2) no cell belongs to more than one of
these rectangles?

Proposed by Alireza Alipour

Solution.
e The answer is 41.

e The first figure shows a way to place 41 rectangles that satisfy the conditions
of the problem.

17
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¢ Now one can easily show that for each of the 10 marked blue cells in the second
figure, say for a marked cell C| it is not possible to place the rectangles in a
way that all the neighbors of C are covered at the same time (Two cells are
neighbors if they share a side).

Therefore one can place at most w = 41 cells in this table.



Solutions 19

Problem 2.

We are given a permutation of {1,2,...,n}, say Il =< 71,...,m, >. The swapping
step is defined as follows:

¢ Choose two number s and ¢, such that 1 < s <t <n and t— s is odd.
o For each 0 <i < =5*1 update I by swapping mey2; and maj2i41.

For instance, applying a swapping step with s = 3 and ¢t = 8 on the permutation
< 10,9,8,7,6,5,4,3,2,1 > results in the permutation < 10,9,7,8,5,6,3,4,2,1 >.
Assume that n > 3 and we start with [T =<n,n—1,...,1 >.

a) Prove that at least n steps is required to modify II to < 1,2,...,n >.
b) Prove that it is possible to modify IT to < 1,2, ...,n > in exactly n steps.

Proposed by Mehdi Haji Beigi

Solution.

a) Note that we have to move each of n and 1, n— 1 units from their initial spot.
Therefore if one is able to sort the sequence in n — 1 many steps, then both
1 and n must be moved towards their final spot at all the steps. If n is odd
this is impossible, as in the first step one can not move these two at the same
time a contradiction. If n is even, at the first step we must set s = 1 and
t = n. After the first step 7, = 2 and hence 2 is n— 2 units away from its final
spot, so at all the remaining steps we must move 1 and 2 together towards
the left of the sequence. But this is not possible already in the second step,
a contradiction.

b) If n is odd, for every ¢ € {1,3,5,...,n}, at step i weset s=1land t =n—1,
and for every i € {1,3,5,...,n}, at step ¢ we set s =2 and t = n.
If n is even, for every ¢ € {1,3,5,...,n—1}, at step ¢ we set s =1 and t = n,
and for every i € {2,4,6,...,n— 1}, at step i weset s=2and t =n— 1.
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Problem 3.

Let A1,..., Asg be subsets of size three of the set X = {1,2,...,10}. We say that a
subset S of X is a covering subset if for every 1 <4 < 20, it holds that SN A; # 0.

What is the minimum possible value of k, such that a covering subset of size k
always exists?

Solution.

Proposed by Alireza Alipour

e The answer is 6.

o IfAy,..

., A1 is the set of all subsets of size 3of B = {1,...,5} and A11,..., A2

is the set of all subsets of size 3 of C'= {6,..., 10}, then any covering subset

must

have at least 3 elements in A and 3 elements in B. Hence, in this case,

the size of the minimum covering set is at least 6.

e To show that the size of the minimum covering set is always at most 6, we
provide two solutions:

Proof: If there is a subset B of X with |B| = 4 such that for every
i, A; ¢ B then, X \ B is a covering subset of size 6, and hence the
claim. Thus assume for every B C X with |B| = 4, this does not hold.
Note that for every A; there are exactly 10 — 3 = 7 subsets B of X
with |B| = 4 and A; C B. This means that 7 x 20 > 22 = 210, a
contradiction!

Alternative Proof: We produce a covering set S of size 6 by applying
a greedy strategy. We start by S = () and the assumption that non of
the sets A1, Az, ..., Ago is covered yet. At each stage take the element
that belongs to the maximum number of uncovered subsets, say s, add
s to S, and consider the uncovered subsets that contain s as covered
sets. We terminate the process as soon as all the subsets are covered.
Using the pigeonhole principle one can show that after the first stage,
the number of uncovered sets is at most 20— % = 14, after the second
stage this becomes at most 14 — ([222] + 1) = 9, then it becomes at
most 9 — ([2%3] + 1) = 5, then it becomes at most 5 — ([222] + 1) = 2,
then it becomes 1 and at the last stage we can cover the (possible) final
uncovered set.
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Problem 4.

We call a graph planar if it can be drawn on the plane so that its edges intersect
only at their endpoints. Let n > 3 be an integer and G be a planar graph on n
vertices. Determine the maximum possible number of cycles of length 3 of G in
terms of n.

Proposed by Morteza Saghafian

Solution.

e The answer is 3n — 8.

e First, we provide a planar graph G, on n vertices with 3n — 8 triangles for
every n and it contains an inner face that is a triangle and has no other
vertices inside this face. For n = 3 we set G3 := K3. Now assume for some n,
G, exists. We construct G,+1 from G, by adding a new vertex v inside an
empty triangle face F' of G, and then we connect v to all the three vertices
of F. Note that after this we introduce three new triangles, that are empty
faces and hence the claim.

e To show that every planar graph has at most 3n — 8 triangles, we provide two
solutions:

— Solution 1: We use induction on n. The condition holds for n = 3.
Assume the inductive hypothesis holds for 1 to n. Now let G be a
planar graph on n 4 1 vertices and consider a fixed planar drawing of
G. If all the triangles of G are faces of GG, then by applying the Euler
formula we have an upper bound of 2n — 5 on the number of faces and
hence the same bound on the number of vertices. This completes the
argument as 2n — 5 < 3n — 8. So let us assume there exists a triangle
T, that is not a face of G. This means that there is at least one vertex
inside 7', as T is not an inner face and also there is at least one vertex
outside 7" as T is not an outer face. Let k be the number of other
vertices inside T'. Therefore there are n — k — 3 vertices outside 7. By
applying induction there are at most 3(k + 3) — 8 triangles that include
vertices of T and the points inside T and there are at most 3(n — k) — 8
triangles that include vertices of 7" and the points outside 7. Since T
has been taken into account twice, then the total number of triangles is
at most 3(k+3) —8+3(n—k)—8—-1=3n—-28.
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— Solution 2: First we show that we can assume all the vertices have
a degree at least 2. This can be guaranteed iteratively by removing
vertices of degree 0 or 1 until no such vertex exists anymore (this is
possible as these vertices do not belong to any triangle and also their
removal does not violate the planarity of the graph). Now let v1,..., v,
be the vertices of the graph. For every 1 < i < n, let d; be the degree
of v; and let ¢; be the number of triangles that have v; as one of their
vertices. Note that this means there are ¢; edges in the induced subgraph
of the neighbors of v;. Therefore if we look at the induced subgraph of
v; and all its neighbors, this would be a planar graph with d; +1 vertices
and d; + t; edges. By applying the Euler formula, one has:

di+ti§3(di+1)—6,

and hence:
t; <2d; — 3.

Therefore:

# Triangles = Z %
i=1

"\ 2d; — 3
g;—g

_ 4EG)|

3

4
ggx(i’m—6)—n

=3n—8.
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Problem 5.

Let G be a simple graph and let V' be the set of vertices of G. We denote by f(G)
the maximum number k such that there exists a subset S C V with |S| = k, in
which every vertex in S has at most one neighbor in S.

a) Compute f(G)ifV ={0,1,...,n—1}and E = {uv|u—v = r (mod n) where r €
{-2,-1,1,2}}.

b) Assume each vertex v € V' corresponds to a unique sequence of length n con-
sisting of elements in {0,1,2} (|[V(G)| = 3"™). A pair of vertices are adjacent
in G if their corresponding sequences differ in exactly one element (one bit).
Prove that f(G) > 3!, For example, if n = 4 the vertices corresponding to
sequence < 0,1,2,0 > and < 0,1,1,0 > only differ in the third position and
hence they are adjacent. Prove that f(G) > 3"~ .

Proposed by Alireza Alipour

Solution.

a) Let us assume that n > 4 (For smaller values it is easy to calculate f(G).)

Let us also assume that the vertices are arranged around a circle for 0 to
n. We denote by S, a subset of size f(G) that satisfies the conditions of the
problem. Now observe that from every four consecutive vertices, at most two
of them belong to S. This already suggests that f(G) < [§]. So if n = 4k or
n =4k + 1 then f(G) < 2k and if n = 4k + 3 then f(G) < 2k + 1.

Now for n = 4k + 2, we strengthen the upper-bound by showing f(G) <
[3] =1 = 2k. Note that by the above argument, S contains at most two
elements from every four consecutive vertices, and if f(G) = § = 2k+1, then
S =40,2,4,...,4k} or S ={1,3,5,...,4k + 1}. In both cases, S is not valid
as all the vertices in S have two neighbors inside S. Therefore if n = 4k + 2

then f(G) < 2k.

We complete the argument by providing sets S that satisfy the properties of
the problem and also attain our upper bound. Now for n = 4k, 4k+1, and 4k+
2, the set S :=1{0,1,4,5,8,9,12,13,...,4k — 4,4k — 3} satisfies the property
and has 2k elements. For n = 4k + 3, S := {0,1,4,5,8,9,12,13,...,4k —
4,4k — 3} U {4k} satisfies the property and has 2k + 1 elements.
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b) Let A, = {(z1,%2,...,2n)|(x1+22+ - +2n) = 0 (mod 3)}. We use induction

on n to show that we can select S, C V such that |S,| > 3!, S, UA, =0,
and S, satisfies the properties in the problem statement. For n = 1, we set
S1 ={(1),(2)}. Now assume the inductive hypothesis holds for n. We set

Sn+1 - {(mhm%- .. axnaO)levav i '737”) € S”L}U

{(y17y27 s 73/11,])‘1 < .7 <2and (ylvaa s 7yn) € An}

One can show that every vertex in S,+1 is adjacent to at most one vertex
in Sp4+1 as (1) if the last coordinate of a vertex in Sp41 is zero then by
construction this vertex can only be adjacent to vertices in S,+1 whose last
bit are also zero, and (2) if the last coordinate of a vertex v € S,41 is
j € {2, 3}, then the only neighbor of this vertex in Sp+1 is the vertex u, such
that the last coordinate is 5 — j and its other coordinate are the same as v.
Furthermore, by construction the size of |Sp+1| = |Sn|+2|An|. We know that
|Sn| > 3", Also, we can show that |A,| = 3""!, as there are 3" ' as by
choosing n — 1 coordinates of an element in A, in all the possible 3"~ ways,
for the last coordinate there is exactly one valid choice for the last coordinate.
Altogether, we have:

1Spi1] = |Sn] +2|An] > 3" +2x 3" =3"
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Problem 6.

Consider the increasing sequence 1,2, ..., n. In each move, we first take two adjacent
elements z and y that are still positive, and then by spending min{z, y} many gold
coins we decrease both elements by min{z,y}. What is the minimum number of
gold coins that we have to spend in order to reach a sequence in which no more
moves are possible?

Proposed by Mehdi Haji Beigi

Solution.

o The answer is (n— 1)+ (n—4)+ (n —7) 4+ .--- + r, where r is the smallest
positive integer such that n —1 = 3 (mod 3) (i.e. r is the remainder of n — 1
divided by 3).

o We apply induction on n to show that there is a way to do the moves such
that in total we spend (n — 1)+ (n—4)+ (n—7)+.---+r many gold coins.
In the first step, we apply the move on n — 2 and n — 1. After this, the last
three elements will be 0, 1, and n. Now if we apply it to the last two elements
the sequence becomes 1,2,3,...,n— 3,0,0,n — 1. Note that so far we spent
n — 1 many gold coins. Now we can forget about the last three elements and
by induction there is a way to deal with the first n — 3 elements by spending
at most (n —4) + (n — 7) + --- + r many gold coins and this completes the
argument.

e In order to show that we can not do better, we observe that if you consider
the i-th and (¢ + 1)-th elements we should make at least one of them zero
at the final stage. This implies that the total amount of gold coins that we
spend on the steps in which we reduce the value of at least one of these two
elements, is at least 1.

Therefore, one must spend:

— at least n — 1 gold coins in the steps that reduce the values of (n —1)-th
or n-th element,

— at least n — 4 gold coins in the steps that reduce the values of (n —4)-th
or (n — 3)-th element,

— and at least r gold coins in the steps that reduces the values of r-th or
(r + 1)-th element.

Thus (n — 1)+ (n—4)+ (n —7) + -+ + r is a lower bound and hence the
claim.
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Problem 7.

There are 100 points on the plane, namely Py, ..., Pigo such that no three points
are collinear. Assume for every ¢ and j such that 1 <14 < j — 1 < 98, the segments
P;P;11, PjPj11 do not intersect (i.e., do not share a common point). We say that
{Pi, Pi+1, Pi12} is an empty consecutive triple if the triangle AP; Piy1 P; 12 does not
contain any of the other points. Find the largest number k such that one can always
find at least £ empty consecutive triples.

Proposed by Morteza Saghafian

Solution.

e The answer is 1.

e The following example shows that one can not always guarantee 2 empty
consecutive triangles. Note that in this example for every 1 < i < 98,
AP»;PZ'JAPZ'JFQ contains Piog.

e Now we prove that there always exists an empty consecutive triangle.
Claim 1: Assume for some i € {3,...,100}, PAP> ... P; is a polygon that does
not intersect itself and does not intersect any of the segments in the path.
Then either we can find an empty consecutive triangle or Pigo is a point that
is inside the polygon P1 P» ... P;.
Claim 2: There exists some i € {3,...,100} such that P; P» ... P; is a polygon
that does not intersect itself and does not intersect any of the segments in
the path.
Let us assume there are no empty consecutive triangles. By Claims 1 and 2,
we can find some 3 < ¢ < 100 such that P; ... P; is a polygon that satisfies
the conditions of Claim 1 and the polygon contains Pigo. However, by a
symmetric argument, we can find some 2 < j < 99 such that Pigo...P; is a
polygon that satisfies the conditions of Claim 1 and the polygon contains Pi.
However P; ... P; and Pigo ... P; can not exist at the same time.
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Proof of Claim 1: Case 1) We first consider the case that P1 P> ... P; does not
contain any of the points in {Pit1,..., Pioo}. If i = 3, then AP, P>Ps is the
desired triangle. Otherwise, in a triangulation of Pi P> ... P; there are at least
two triangles such as T1 and T3, that contain two sides of the polygon. At
least one of the two triangles does not contain the segment P; P; and hence
it is an empty consecutive triangle. Case 2) If P1 P ... P; contains a point
in A = {Pi41,...,Pioo} then all the points in A by the assumptions of the
claim and also the assumptions in the problem statement. These cases cover
the proof of the claim.

Proof of Claim 2: All we need to show is that there exists a point P; for some
1 € {3,...,100} such that P; P; does not intersect any of the segments in the
path. For this, we draw a line £ that is initially the line that contains P; and
P>. Now we fix P as a point of £ and as soon as a point P; such that ¢ > 2
becomes part of £. Now clearly P;P; does not intersect any segment of the
path and this means Py P; is the desired polygon.
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